فهرست:
فصل اول: مقدمه
1-1- کلیات...................................................................................................................................................... 2
1-2- قلب انسان............................................................................................................................................. 7
1-2-1- ساختار و عملکرد قلب..................................................................................................... 7
1-3-تصویر برداری ام ار آی...................................................................................................................... 10
1-3-1- ام ار آی قلبی................................................................................................................... 12
1-4-توجیه ضرورت انجام طرح و روش کار................................................................................... 14
1-5-مساله پژوهش از دیدگاه پزشکی.............................................................................................. 16
فصل دوم: موضوع و پیشینه تحقیق
2-1-مقدمه............................................................................................................................................... 18
2-2- روش های بخش بندی تصاویر ام ار آی قلبی.................................................................... 18
2-2-1- روش بخشبندی اتوماتیک........................................................................................... 20
2-2-2- روش های نیمه اتوماتیک............................................................................................. 22
2-2-2-1- بخش بندی با دانش ضعیف یا بدون دانش.................................................. 22
2-2-2-1-1- روشهای مبتنی بر تصویر..................................................................... 22
2-2-2-1-2- روشهای مبتنی بر طبقه بندی پیکسل............................................ 23
2-2-2-1-3- مدل های متغیر........................................................................................ 24
عنوان صفحه
2-2-2-1-4 نتیجه گیری.................................................................................................. 26
2-2-2-3- بخشبندی با دانش قوی.................................................................................... 27
2-2-2-3-1- تغییر شکل مدل با دانش اولیه قوی................................................... 28
2-2-2-3-2- شکل فعال و مدلهای ظاهری.............................................................. 28
2-2-2-3-3- بخشبندی مبتنی بر اطلس.................................................................. 30
2-2-2-3-4- نتیجه گیری............................................................................................... 32
فصل سوم: بخشبندی بطن راست و چپ از تصاویر MRI قلب
3-1-مقدمه............................................................................................................................................... 38
3-2- روش PSO.................................................................................................................................... 40
3-3- عملیات ساختاری........................................................................................................................ 44
3-4- روش پیمایشگر تصادفی............................................................................................................ 47
3-4-1- وزن یالها.......................................................................................................................... 50
3-4-2- مسئله دیریکله ترکیبی.................................................................................................. 51
3-4-3- قیاس مداری..................................................................................................................... 51
3-4-4- ارتباط روش با فرایند انتشار در بینایی ماشین....................................................... 52
3-4-5- روش پیمایش تصادفی بهبود داده شده.................................................................... 54
3-4-6- خلاصه الگوریتم............................................................................................................... 55
3-4-7- ویژگیهای الگوریتم از نظر تئوری.............................................................................. 55
3-4-8- ویژگیهای رفتاری........................................................................................................... 57
3-4-8-1- مرزهای ضعیف..................................................................................................... 57
3-4-8-2- مقاومت در برابر نویز............................................................................................ 58
3-4-8-3- نواحی مبهم و فاقد برچسب............................................................................. 59
عنوان صفحه
فصل چهارم: بررسی نتایج
4-1- مقدمه.............................................................................................................................................. 61
4-2- خصوصیات دادهها....................................................................................................................... 61
4-3- نحوه پیادهسازی روش پیشنهادی........................................................................................... 62
4-4- بحث روی نتایج حاصل از روش¬های پیشنهادی............................................................. 64
4-5- بررسی تکنیکی............................................................................................................................ 67
4-5-1- ضریب Dice...................................................................................................................... 69
4-5-2- محاسبه تشابه................................................................................................................... 70
4-6- مقایسه با روشهای پیشین...................................................................................................... 71
4-7- نتیجهگیری.................................................................................................................................... 76
فصل پنجم: جمعبندی و کارهای آینده
5-1-مقدمه............................................................................................................................................... 78
5-2- پیشنهادات برای مطالعات آینده.............................................................................................. 79
فهرست منابع
منبع:
[1] Lloyd-Jones, D., Adams, R. J., Brown, T. M., Carnethon, M., Dai, S., De Simone, G., and Wylie-Rosett, J. (2010). Heart disease and stroke statistics, A report from the American Heart Association. Circulation, 121(7), e46-e62.
[2] Petitjean, C., Dacher, J. N. (2011). A review of segmentation methods in short axis cardiac MR images. Medical image analysis, 15(2), 169-184.
[3] Shors, S. M., Fung, C. W., François, C. J., Finn, J. P., and Fieno, D. S. (2004). Accurate Quantification of Right Ventricular Mass at MR Imaging by Using Cine True Fast Imaging with Steady-State Precession: Study in Dogs 1. Radiology, 230(2), 383-388.
[4] Ghose, S. (2009). Deformable Model based Computation of Ejection Fraction of Right Ventricle from Cine MRI (Doctoral dissertation, A Thesis Submitted for the Degree of M. Sc. Erasmus Mundus in Vision and Robotics,(VIBOT), University of Bourgogne).
[5] Alfakih, K., Plein, S., Thiele, H., Jones, T., Ridgway, J. P., and Sivananthan, M. U. (2003). Normal human left and right ventricular dimensions for MRI as assessed by turbo gradient echo and steady‐state free precession imaging sequences. Journal of Magnetic Resonance Imaging, 17(3), 323-329.
[6] Rougon, N., Petitjean, C., Prêteux, F., Cluzel, P., and Grenier, P. (2005). A non-rigid registration approach for quantifying myocardial contraction in tagged MRI using generalized information measures. Medical Image Analysis, 9(4), 353-375.
[7] Cocosco, C. A., Netsch, T., Sénégas, J., Bystrov, D., Niessen, W. J., and Viergever, M. A. (2004, June). Automatic cardiac region-of-interest computation in cine 3D structural MRI. In International Congress Series,1268 , 1126-1131.
[8] Huang, J., Huang, X., Metaxas, D., and Axel, L. (2007, April). Dynamic texture based heart localization and segmentation in 4-d cardiac images. In Biomedical Imaging: From Nano to Macro(ISBI), 852-855.
[9] Jolly, M. P. (2008). Automatic recovery of the left ventricular blood pool in cardiac cine MR images. In Medical Image Computing and Computer-Assisted Intervention–(MICCAI), 110-118.
[10] Pednekar, A., Kurkure, U., Muthupillai, R., Flamm, S., and Kakadiaris, I. A. (2006). Automated left ventricular segmentation in cardiac MRI. Biomedical Engineering, IEEE Transactions on, 53(7), 1425-1428.
[11] Gering, D. T. (2003). Automatic segmentation of cardiac MRI. In Medical Image Computing and Computer-Assisted Intervention-MICCAI, 524-532.
[12] Lin, X., Cowan, B. R., and Young, A. A. (2006). Automated detection of left ventricle in 4D MR images: experience from a large study. In Medical Image Computing and Computer-Assisted Intervention–MICCAI , 728-735.
[13] Jolly, M. P., Duta, N., and Funka-Lea, G. (2001). Segmentation of the left ventricle in cardiac MR images. In Computer Vision, 2001. ICCV 2001, 1, 501-508.
[14] Viola, P., and Jones, M. (2001). Rapid object detection using a boosted cascade of simple features. In Computer Vision and Pattern Recognition, 2001. CVPR 2001, 1, 511-518.
[15] Goshtasby, A., and Turner, D. A. (1995). Segmentation of cardiac cine MR images for extraction of right and left ventricular chambers. Medical Imaging, IEEE Transactions on, 14(1), 56-64.
[16] Weng, J., Singh, A., and Chiu, M. Y. (1997). Learning-based ventricle detection from cardiac MR and CT images. Medical Imaging, IEEE Transactions on, 16(4), 378-391.
[17] Katouzian, A., Prakash, A., and Konofagou, E. (2006, August). A new automated technique for left-and right-ventricular segmentation in magnetic resonance imaging. In Engineering in Medicine and Biology Society, 2006. EMBS'06. 28th Annual International Conference of the IEEE, 3074-3077.
[18] Nachtomy, E., Cooperstein, R., Vaturi, M., Bosak, E., Vered, Z., and Akselrod, S. (1998). Automatic assessment of cardiac function from short-axis MRI: procedure and clinical evaluation. Magnetic resonance imaging, 16(4), 365-376.
[19] Gupta, A., Von Kurowski, L., Singh, A., Geiger, D., Liang, C. C., Chiu, M. Y., and Wilson, D. L. (1993, September). Cardiac MR image segmentation using deformable models. In Computers in Cardiology 1993, Proceedings, 747-750.
[20] Üzümcü, M., van der Geest, R. J., Swingen, C., Reiber, J. H., and Lelieveldt, B. P. (2006). Time continuous tracking and segmentation of cardiovascular magnetic resonance images using multidimensional dynamic programming. Investigative radiology, 41(1), 52-62.
[21] Van der Geest, R. J., Jansen, E., Buller, V. G. M., and Reiber, J. H. C. (1994, September). Automated detection of left ventricular epi-and endocardial contours in short-axis MR images. In Computers in Cardiology, USA, 33-36.
[22] Yeh, J. Y., Fu, J. C., Wu, C. C., Lin, H. M., and Chai, J. W. (2005). Myocardial border detection by branch-and-bound dynamic programming in magnetic resonance images. Computer methods and programs in biomedicine, 79(1), 19-29.
[23] Liu, N., Crozier, S., Wilson, S., Liu, F., Appleton, B., Trakic, A., and Riley, R. (2006, January). Right ventricle extraction by low level and model-based algorithm. In Engineering in Medicine and Biology Society, IEEE-EMBS, 1607-1610.
[24] Geiger, D., Gupta, A., Costa, L. A., and Vlontzos, J. (1995). Dynamic programming for detecting, tracking, and matching deformable contours. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 17(3), 294-302.
[25] Fu, J. C., Chai, J. W., and Wong, S. T. (2000). Wavelet-based enhancement for detection of left ventricular myocardial boundaries in magnetic resonance images. Magnetic resonance imaging, 18(9), 1135-1141.
[26] Cousty, J., Najman, L., Couprie, M., Clément-Guinaudeau, S., Goissen, T., and Garot, J. (2010). Segmentation of 4D cardiac MRI: Automated method based on spatio-temporal watershed cuts. Image and Vision Computing, 28(8), 1229-1243.
[27] Nachtomy, E., Cooperstein, R., Vaturi, M., Bosak, E., Vered, Z., and Akselrod, S. (1998). Automatic assessment of cardiac function from short-axis MRI: procedure and clinical evaluation. Magnetic resonance imaging, 16(4), 365-376.
[28] Cassen, C., Domenger, J. P., Braquelaire, J. P., and Barat, J. L. (2001). Left ventricular segmentation in MRI images. In Image and Signal Processing and Analysis, ISPA 200, Pula, Croatia, 244-249.
[29] Noble, N. M., Hill, D. L., Breeuwer, M., Schnabel, J. A., Hawkes, D. J., Gerritsen, F. A., and Razavi, R. (2002). Myocardial delineation via registration in a polar coordinate system. In Medical Image Computing and Computer-Assisted Intervention—MICCAI, 651-658.
[30] Kulkarni, R. V., and Venayagamoorthy, G. K. (2010). Bio-inspired algorithms for autonomous deployment and localization of sensor nodes. Systems, Man, and Cybernetics, Part C: Applications and Reviews, IEEE Transactions on, 40(6), 663-675.
[31] Kapur, J. N., Sahoo, P. K., and Wong, A. K. C. (1985). A new method for gray-level picture thresholding using the entropy of the histogram. Computer vision, graphics, and image processing, 29(3), 273-285.
[32] Lim, Y. W., and Lee, S. U. (1990). On the color image segmentation algorithm based on the thresholding and the fuzzy c-means techniques. Pattern Recognition, 23(9), 935-952.
[33] Brink, A. D. (1995). Minimum spatial entropy threshold selection. IEE Proceedings-Vision, Image and Signal Processing, 142(3), 128-132.
[34] Sathya, P. D., and Kayalvizhi, R. (2010). PSO based tsallistresholding selection procedure for image segmentation. International Journal of Computer Applications, 5(4), 39–46.
[35] Fogel, D. B. (2000). Evolutionary computation: Toward a new philosophy of machine intelligence (Second ed.). Piscataway, NJ: IEEE Press.
[36] Dawant, B., Zijdenbos, A. (2000). Image segmentation. In: Sonka, M., Fitzpatrick, J., Handbook of Medical Imaging, vol. 2. SPIE Press, Bellingham, WA,71-127.
[37] Dempster, A. P., Laird, N. M., and Rubin, D. B. (1977). Maximum likelihood from incomplete data via the EM algorithm. Journal of the Royal statistical Society, 39(1), 1-38.
[38] Stalidis, G., Maglaveras, N., Efstratiadis, S. N., Dimitriadis, A. S., and Pappas, C. (2002). Model-based processing scheme for quantitative 4-D cardiac MRI analysis. Information Technology in Biomedicine, IEEE Transactions on, 6(1), 59-72.
[39] Kedenburg, G., Cocosco, C. A., Köthe, U., Niessen, W. J., Vonken, E. J. P., and Viergever, M. A. (2006, March). Automatic cardiac MRI myocardium segmentation using graphcut. In Medical Imaging, International Society for Optics and Photonics, 61440A-61440A.
[40] Kass, M., Witkin, A., and Terzopoulos, D. (1988). Snakes: Active contour models. International journal of computer vision, 1(4), 321-331.
[41] Xu, C., Pham, D. L., Prince, J. L. (2000). Medical image segmentation using deformable models. In: Handbook of Medical Imaging. Medical Image Processing and Analysis, SPIE Press, 2, 129-174.
[42] Osher, S., and Sethian, J. A. (1988). Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations. Journal of computational physics, 79(1), 12-49.
[43] Yezzi Jr, A., Kichenassamy, S., Kumar, A., Olver, P., and Tannenbaum, A. (1997). A geometric snake model for segmentation of medical imagery. Medical Imaging, IEEE Transactions on, 16(2), 199-209.
[44] Battani, R. C. A. C. T. R., Corsi, C., Sarti, A., Lamberti, C., Piva, T., and Fattori, R. (2003, September). Estimation of right ventricular volume without geometrical assumptions utilizing cardiac magnetic resonance data. In Computers in Cardiology, IEEE, 81-84.
[45] Ranganath, S. (1995). Contour extraction from cardiac MRI studies using snakes. Medical Imaging, IEEE Transactions on, 14(2), 328-338.
[46] Paragios, N. (2002). A variational approach for the segmentation of the left ventricle in cardiac image analysis. International Journal of Computer Vision, 50(3), 345-362.
[47] Chakraborty, A., Staib, L. H., and Duncan, J. S. (1996). Deformable boundary finding in medical images by integrating gradient and region information. Medical Imaging, IEEE Transactions on, 15(6), 859-870.
[48] El Berbari, R., Bloch, I., Redheuil, A., Angelini, E., Mousseaux, E., Frouin, F., and Herment, A. (2007, August). An automated myocardial segmentation in cardiac MRI. In Engineering in Medicine and Biology Society, 2007. EMBS 2007. 29th Annual International Conference of the IEEE, 4508-4511.
[49] Jolly, M. P. (2006). Automatic segmentation of the left ventricle in cardiac MR and CT images. International Journal of Computer Vision, 70(2), 151-163.
[50] Pham, Q. C., Vincent, F. C. P. C. P., Clarysse, P., Croisille, P., and Magnin, I. E. (2001). A FEM-based deformable model for the 3D segmentation and tracking of the heart in cardiac MRI. In Image and Signal Processing and Analysis, 2001. ISPA 2001, 250-254.
[51] Zhukov, L., Bao, Z., Guskov, I., Wood, J., and Breen, D. (2002, February). Dynamic deformable models for 3D MRI heart segmentation. In SPIE Medical Imaging, 46 , 1398-1405.
[52] Montagnat, J., and Delingette, H. (2005). 4D deformable models with temporal constraints: application to 4D cardiac image segmentation. Medical Image Analysis, 9(1), 87-100.
[53] Heiberg, E., Wigstrom, L., Carlsson, M., Bolger, A. F., and Karlsson, M. (2005, September). Time resolved three-dimensional automated segmentation of the left ventricle. In Computers in Cardiology, IEEE, 599-602.
[54] Lynch, M., Ghita, O., and Whelan, P. F. (2008). Segmentation of the left ventricle of the heart in 3-D+ t MRI data using an optimized nonrigid temporal model. Medical Imaging, IEEE Transactions on, 27(2), 195-203.
[55] Billet, F., Sermesant, M., Delingette, H., and Ayache, N. (2009). Cardiac motion recovery and boundary conditions estimation by coupling an electromechanical model and cine-MRI data. In Functional Imaging and Modeling of the Heart, Springer Berlin Heidelberg, 376-38.
[56] Frangi, A. F., Rueckert, D., Schnabel, J. A., and Niessen, W. J. (2002). Automatic construction of multiple-object three-dimensional statistical shape models: Application to cardiac modeling. Medical Imaging, IEEE Transactions on, 21(9), 1151-1166.
[57] Heimann, T., and Meinzer, H. P. (2009). Statistical shape models for 3D medical image segmentation: A review. Medical image analysis, 13(4), 543-563.
[58] Rohlfing, T., Brandt, R., Menzel, R., Russakoff, D. B., and Maurer Jr, C. R. (2005). Quo vadis, atlas-based segmentation?. In Handbook of Biomedical Image Analysis, 435-486.
[59] Lynch, M., Ghita, O., & Whelan, P. F. (2006). Left-ventricle myocardium segmentation using a coupled level-set with a priori knowledge. Computerized Medical Imaging and Graphics, 30(4), 255-262.
[60] Tsai, A., Yezzi Jr, A., Wells, W., Tempany, C., Tucker, D., Fan, A., ... and Willsky, A. (2003). A shape-based approach to the segmentation of medical imagery using level sets. Medical Imaging, IEEE Transactions on, 22(2), 137-154.
[61] Senegas, J., Cocosco, C. A., and Netsch, T. (2004, May). Model-based segmentation of cardiac MRI cine sequences: a Bayesian formulation. In Medical Imaging, International Society for Optics and Photonics, 432-443.
[62] Cootes, T. F., Taylor, C. J., Cooper, D. H., and Graham, J. (1995). Active shape models-their training and application. Computer vision and image understanding, 61(1), 38-59.
[63] Mitchell, S. C., Bosch, J. G., Lelieveldt, B. P., van der Geest, R. J., Reiber, J. H., and Sonka, M. (2002). 3-D active appearance models: segmentation of cardiac MR and ultrasound images. Medical Imaging, IEEE Transactions on, 21(9), 1167-1178.
[64] Stegmann, M. B., Nilsson, J. C., and Grønning, B. A. (2001). Automated segmentation of cardiac magnetic resonance images. Proc, International Society of Magnetic Resonance In Medicine-ISMRM 2001, Glasgow, Scotland, UK, 9. 827.
[65] Mitchell, S. C., Lelieveldt, B. P., van der Geest, R. J., Bosch, H. G., Reiver, J. H. C., and Sonka, M. (2001). Multistage hybrid active appearance model matching: segmentation of left and right ventricles in cardiac MR images. Medical Imaging, IEEE Transactions on, 20(5), 415-423.
[66] Zhang, H., Wahle, A., Johnson, R. K., Scholz, T. D., and Sonka, M. (2010). 4-D cardiac MR image analysis: left and right ventricular morphology and function. Medical Imaging, IEEE Transactions on, 29(2), 350-364.
[67] Zambal, S., Hladůvka, J., and Bühler, K. (2006). Improving segmentation of the left ventricle using a two-component statistical model. In Medical Image Computing and Computer-Assisted Intervention–MICCAI, Springer Berlin Heidelberg, 151-158.
[68] Üzümcü, M., Frangi, A. F., Sonka, M., Reiber, J. H., and Lelieveldt, B. P. (2003). ICA vs. PCA active appearance models: Application to cardiac MR segmentation. In Medical Image Computing and Computer-Assisted Intervention-MICCAI, Springer Berlin Heidelberg, 451-458.
[69] Ordas, S., Van Assen, H. C., Boisrobert, L., Laucelli, M., Puente, J., Lelieveldt, B. P., and Frangi, A. F. (2005). Statistical modeling and segmentation in cardiac MRI using a grid computing approach. In Advances in Grid Computing-EGC, Springer Berlin Heidelberg, 6-15.
[70] Abi-Nahed, J., Jolly, M. P., and Yang, G. Z. (2006). Robust active shape models: A robust, generic and simple automatic segmentation tool. In Medical Image Computing and Computer-Assisted Intervention–MICCAI, Springer Berlin Heidelberg, 1-8.
[71] Mitchell, S. C., Bosch, J. G., Lelieveldt, B. P., van der Geest, R. J., Reiber, J. H., and Sonka, M. (2002). 3-D active appearance models: segmentation of cardiac MR and ultrasound images. Medical Imaging, IEEE Transactions on, 21(9), 1167-1178.
[72] Mitchell, S. C., Lelieveldt, B. P., van der Geest, R. J., Bosch, H. G., Reiver, J. H. C., and Sonka, M. (2001). Multistage hybrid active appearance model matching: segmentation of left and right ventricles in cardiac MR images. Medical Imaging, IEEE Transactions on, 20(5), 415-423.
[73] Collins, D. L., Holmes, C. J., Peters, T. M., and Evans, A. C. (1995). Automatic 3‐D model‐based neuroanatomical segmentation. Human Brain Mapping, 3(3), 190-208.
[74] Lorenzo-Valdés, M., Sanchez-Ortiz, G. I., Mohiaddin, R., and Rueckert, D. (2002). Atlas-based segmentation and tracking of 3D cardiac MR images using non-rigid registration. In Medical Image Computing and Computer-Assisted Intervention—MICCAI, Springer Berlin Heidelberg, 642-650.
[75] Studholme, C., Hill, D. L., and Hawkes, D. J. (1999). An overlap invariant entropy measure of 3D medical image alignment. Pattern recognition, 32(1), 71-86.
[76] Lötjönen, J., Kivistö, S., Koikkalainen, J., Smutek, D., and Lauerma, K. (2004). Statistical shape model of atria, ventricles and epicardium from short-and long-axis MR images. Medical image analysis, 8(3), 371-386.
[77] Lorenzo-Valdés, M., Sanchez-Ortiz, G. I., Elkington, A. G., Mohiaddin, R. H., and Rueckert, D. (2004). Segmentation of 4D cardiac MR images using a probabilistic atlas and the EM algorithm. Medical Image Analysis, 8(3), 255-265.
[78] Alrashidi, M. R., and El-Hawary, M. E. (2006). A survey of particle swarm optimization applications in power system operations. Electric Power Components and Systems, 34(12), 1349-1357.