فهرست:
1. کلیات 1
1-1 مقدمه 1
1-2 هدف از انجام این تحقیق 2
1-3 روش انجام تحقیق 4
1-4 نوآوری تحقیق 5
1-5 ساختار پایان نامه 5
2. پیشینهی تحقیق 7
2-1 مقدمه 7
2-2 انواع مدلها 9
2-2-1 مدلهای ریاضی (mathematical models) 9
2-2-1-1 طبقه بندی مدلهای ریاضی 10
2-2-1-2 معادلهی حاکم بر آبهای زیر زمینی 10
2-2-2 مدلهای فیزیکی (physical models) 13
2-2-3 مدلهای تمثالی(analog models) 15
2-2-3-1 مدلهای شبکهای Pore Network Models (PNMs) 16
2-2-3-2 مدلهای سیال لزج (viscous fluid models) 25
2-2-3-3 مدلهای غشایی (membrane models) 26
2-2-3-4 مدلهای حرارتی (thermal models) 26
2-2-3-5 مدلهای الکتریکی (electrical models) 27
َ2-3 روشهای عددی 28
2-3-1 روش تفاضل محدود (finite difference method) 29
2-3-2 روش حجم محدود (finite volume method) 32
2-3-3 روش عناصر محدود (finite element method) 34
2-3-4. روش عناصر مرزی (boundary element method) 36
2-3-5 روش عددی دیفرانسیل کوادراچر (differential quadrature method) 39
2-3-6 روشهای طیفی (spectral methods) 40
3. معرفی روش شبکهای به عنوان روشی عددی برای حل معادلهی آبهای زیرزمینی 41
3- 1 مقدمه 41
3-2 مبانی تئوریکی روشهای شبکهای 42
3-2-1 معادلهی حاکم بر روش شبکهای 42
3-2-2 معادلهی جبری حاکم بر روش شبکهای در حالت ماندگار 45
3-2-3 تأثیر ناهمگنی و ناهمسانی بر معادلات جبری حاکم 50
3-2-4 تزریق و برداشت 51
3-2-5 معادلهی جبری حاکم بر روش شبکهای در حالت ناماندگار 51
3-2-6 آبخوان محصور و آزاد 52
3-2-7 اصلاح روش شبکهای 53
3-2-7-1 بهبود با استفاده از افزایش اتصال گرهها 53
3-2-7-2 بهبود با استفاده از نحوهی مدل کردن گرههای مرزی 57
3-2-8 معادلهی حاکم در حالت کلی 59
3-2-9 تأثیر شکل هندسی مجاری بر روش شبکهای 61
3-2-9-1شکل مجاری 61
3-2-9-2 معادلهی حاکم 62
3- 3 مدل آزمایشگاهی 70
3-3-1 مقدمه 70
3-3-2 نحوهی ساخت مدل آزمایشگاهی 70
3-3-3 روش انجام آزمایش 71
3-3-3-1محیط همگن و همسان با هد ثابت 72
3-3-3-2 آزمایش آبخوان آزاد 72
3-3-3-3 آزمایش لایهی غیر قابل نفوذ 72
3-3-3-4 آزمایش ناهمگن و ناهمسان بودن محیط متخلخل 73
3-3-3-5 آزمایش جریان ناماندگار 74
4. مثالهای عددی و آزمایشگاهی و بحث در نتایج به دست آمده 75
4-1 مقدمه 75
4-2 مثالهای عددی 76
4-1-1 مثال 1) مسألهی حالت ماندگار در محدودهی مربعی و شرایط مرزی شکل 4-1 76
4-1-2 مثال 2) مسألهی حالت ماندگار در محدودهی مربعی و شرایط مرزی شکل 4-5 87
4-1-3 مثال 3) مسألهی حالت ماندگار در محدودهی مستطیلی و شرایط مرزی شکل 4-8 91
4-1-4 مثال 4) مسألهی حالت ماندگار در محدودهی مثلثی و شرایط مرزی شکل4-11 94
4-1-5 مثال 5) مسألهی حالت ماندگار با وجود چاه در محدودهی مستطیلی و شرایط مرزی شکل 4-14 97
4-1-6 مثال 6) مسألهی حالت ماندگار در دامنهای L شکل و شرایط مرزی شکل 4-17 99
4-1-7 مثال 7) مسألهی حالت ناماندگار یک بعدی 101
4-1-8 مثال 8) مسألهی حالت ناماندگار دو بعدی 104
4-1-9 مثال 9) مسألهی حالت ماندگار با شرایط مرزی منحنی 107
4-1-10 مثال 10) مسألهی حالت ماندگار در محدودهی مستطیلی و شرایط مرزی شکل 4-25 110
4-1-11 مثال 11) مسألهی حالت ماندگار در محدودهی مثلثی و شرایط مرزی شکل 4-27 113
4-3 مثالهای آزمایشگاهی 116
4-3-1 آزمایش 1) جریان در اطراف یک مانع مستطیلی 117
4-3-2. آزمایش 2) جریان با شرایط مرزی مرکب 120
4-3-3 آزمایش 3) جریان از زیر پردهی آب بند 122
4-3-4 آزمایش 4) جریان در آبخوان آزاد 124
4-3-5 آزمایش 5) جریان در آبخوانی ناهمگن و ناهمسان 127
5. نتیجهگیری و پیشنهادات 132
پیوستها 134
پیوست 1. حل تحلیلی مثال 1 134
پیوست 2. حل تحلیلی مثال 2 136
پیوست 3. حل تحلیلی مثال 3 137
پیوست 4. حل تحلیلی مثال 4 138
پیوست 5. حل تحلیلی مثال 5 140
پیوست 6. حل تحلیلی مثال 7 142
پیوست 7. حل تحلیلی مثال 8 144
پیوست 8. حل تحلیلی مثال 9 146
پیوست 9. حل تحلیلی آزمایش 4 146
فهرست منابع 148
منبع:
افضلی، حسین، (1387)، بررسی آزمایشگاهی و محاسباتی جریان آشفتهی ماندگار درون محیطهای سنگریزهای با سطح آزاد، پایان نامهی دکتری در رشتهی مهندسی عمران، دانشگاه شیراز.
Acharya, R. C., Sjoerd, E. A. T. M. van der Zee and Leijnse, A., (2004), Porosity–Permeability Properties Generated With A New 2-Parameter 3D Hydraulic Pore-Network Model for Consolidated and Unconsolidated Porous Media, Advances in Water Resources, vol. 27, pp. 707-723.
Arnold, F., (1991), Revisiting the Membrane Analog ― A Conceptual and Communication Tool, Groundwater, vol. 29, pp. 762-764.
Baalousha, H., (2008), Fundamentals of Groundwater Modeling in: Groundwater Modeling, Management and Contamination, Editors: Konig, L. F. and Weiss, J. L., Nova Science Publishers, Inc. pp. 149-166.
Bakker, M. and Strack, O. D. L., (2003), Analytic Elements for Multiaquifer Flow, Journal of Hydrology, vol. 271, pp. 119–129.
Bear, J., (1960), Scales of Viscous Analogy Models for Groundwater Studies, ASCE Journal of the Hydraulics Division, vol. 86, pp. 11-23.
Bear, J., Alexander, H. and Cheng, D., (2010), Modeling Groundwater Flow and Contaminant Transport, Springer.
Berg, S. J, Walter, A. and Illman, W. A., (2012), Improved Predictions of Saturated and Unsaturated Zone Drawdowns in A Heterogeneous Unconfined Aquifer via Transient Hydraulic Tomography: Laboratory Sandbox Experiments, Journal of Hydrology, vol. 470, pp. 172–183.
Blunt, M. J., Jackson, M. D., Piri, M. and Valvatne, P. H., (2002), Detailed Physics, Predictive Capabilities and Macroscopic Consequences for Network Models of Multiphase Flow, Advances in Water Resources, vol. 25, pp. 1069–1089.
Brebbia, C. A., (1978), The Boundary Element Method for Engineers, Pentech Press/ Halstead Press, London/New York.
Bryant, S. L., Mellor, D. W. and Cade, C. A., (1993), Physically Representative Network Models of Transport in Porous Media, AIChE Journal, vol. 39, pp. 387–396.
Chareyre, B., Cortis, A., Catalano, E. and Barthelemy, E., (2012), Pore-Scale Modeling of Viscous Flow and Induced Forces in Dense Sphere Packings, Transport in Porous Media, vol. 92, pp.473–493.
Chen, Z., Huan, G. and Ma, Y., (2006), Computational Methods for Multiphase Flows in Porous Media, SIAM, Philadelphia.
Cheng, A. H. D., (1987), Heterogeneities in Flows through Porous Media by the Boundary Element Method in: Topics in Boundary Element Research, Applications in Geomechanics, Editor: Brebbia, C. A., pp. 129–144.
Cheng, A. H. D. and Morohunfola, O. K., (1993), Multi-Layered Leaky Aquifer Systems: II. Boundary Element Solution, Water Resouces Research, vol. 29, pp. 2801–2811.
Chung, T. J., (2002), Computational Fluid Dynamics, Cambridge University Press.
Collins, M. A., Gelher, L. W. and Wilson, J. L., (1972), Hele-Shaw Model of Long Island Aquifer System, ASCE Journal of the Hydraulics Division, vol. 98, pp. 1701-1714.
Colombus, N., (1966), The Design and Construction of Hele Shaw Models, Groundwater, vol. 4, pp. 16-22.
Daripa, P. and Hwang, H. J., (2008), Nonlinear instability of Hele-Shaw Flows with Smooth Viscous Profiles, Journal of Differential Equations, vol 245, pp. 1819-1837.
Dias, M. M. and Payatakes, A. C., (1986), Network Models for Two-Phase Flow in Porous Media Part I: Immiscible Micro Displacement of Non Wetting Fluids, Journal of Fluid Mechanics, vol. 164, pp. 305–336.
Fairweather, G. and Karageorghis, A., (1998), The Method of Fundamental Solutions for Elliptic Boundary Value Problems, Advances in Computational Mathematics, vol. 9, pp. 69–95.
Fatt, I., (1956), The Network Model of Porous Media, Part I: Capillary Characteristics, Petroleum Transaction AIME, pp. 144–159.
Faulkner, J., Hu. B., Kish, S. and Hua, F., (2009), Laboratory Analog and Numerical Study of Groundwater Flow and Solute Transport in A Karst Aquifer with Conduit and Matrix Domains, Journal of Contaminant Hydrology, vol. 110, pp. 34-44.
Hansen, V. E., (1952), Complicated Well Problems Solved by the Membrane Analogy, Transactions, AmericanGeophysical Union, vol. 33, pp. 912-916.
Herrera, I., (1984), Trefftz method. Topics in Boundary Element Research, Basic Principles and Applications, vol. 1, pp. 225–253.
Hilfer, R., (2002), Review on Scale Dependent Characterization of the Microstructure of Porous Media, Transport in Porous Media, vol. 46, pp. 373–390.
Illman, W. A., Zhu, J. and Yin, D., (2008), Can A Groundwater Flow Model Be Validated? Encouraging, Positive Evidence from Laboratory Hydraulic Tomography Experiments, American Geophysical Union, Fall Meeting, p 04.
Illman, W. A., Zhu, J. and Yin, D., (2010), Comparison of Aquifer Characterization Approaches through Steady State Groundwater Model Validation: A Controlled Laboratory Sandbox Study, Water resources research, vol. 46, W04502, doi:10.1029/2009WR007745.
Iserles, A., (2009), A First Course in the Numerical Analysis of Differential Equations, 2nd Edition, Cambridge University Press.
de Josselin de Jong, (1961), Moiré Patterns of the Membrane Analogy for Groundwater Movement Applied to Multiple Fluid Flow, Journal of Geophysical Research, vol. 66, pp. 3625-3628.
Jiang, Z., vanDijke, M. I. J., Wu, K., Couples, G. D., Sorbie, K. S. and Ma, J., (2012), Stochastic Pore Network Generation from 3d Rock Images, Transport in Porous Media, vol. 94, pp.571–593.
Joekar, V., Hassanizadeh, S. M. and Leijnse, A., (2008), Insights into the Relationships Among Capillary Pressure, Saturation, Interfacial Area and Relative Permeability Using Pore-Network Modeling, Transport in Porous Media, vol. 74, pp. 201–219.
Joekar, V., Prodanović, M., Wildenschild, M. and Hassanizadeh, S. M., (2010), Network Model Investigation of Interfacial Area, Capillary Pressure and Saturation Relationships in Granular Porous Media, Water Resources Research, vol. 46, pp. 1-18.
Jung, Y., Coulibaly, K. M. and Borden. R., (2006), Transport of Edible Oil Emulsions in Clayey-Sands: 3-D Sandbox Results and Model Validation, Journal of Hydrologic Engineering, vol 11, pp. 238-245.
Kim, D. and Lindquist, W. B., (2011), Dependence of Pore-to-Core Up-Scaled Reaction Rate on Flow Rate in Porous Media, Transport in Porous Media, vol. 89, pp. 459–473.
Koplik, J., (1981), Creeping Flow in Two-Dimensional Networks, Journal of Fluid Mechanics, vol. 119, pp. 219-247.
Koplik, J., (1985), Two-Phase Flow in Random Network Models of Porous Media, SPE Journal, vol. 25, pp. 89-100.
Li, S. and Liu, W. K., (2007), Meshfree Particle Methods, Springer.
Liang, Z., Loannidis, M. A. and Chatzis, I., (2000), Geometric and Topological Analysis of Three Dimensional Porous Media: Pore Space Partitioning Based on Morphological Skeletonization, Journal of Colloid and Interface Science, vol. 221, pp. 13–24.
Liggett, J. A., (1977), Location of Free Surface in Porous Media, ASCE Journal of the Hydraulics Division, vol. 103, pp. 353–365.
Liu, P. L. F., Cheng, A. H. D., Liggett, J. A. and Lee, J. H., (1981), Boundary Integral Equation Solutions to Moving Interface Between Two Fluids in Porous Media, Water Resources Research, vol. 17, pp. 1445–1452.
Loudyi, D., Falconer, R. A. and Lin, B., (2007), Mathematical Development and Verification of a Non-Orthogonal Finite Volume Model For Groundwater Flow Applications, Advances in Water Resources., vol. 30, pp. 29–42.
Man, H. N. and Jing, X. D., (2000), Pore Network Modelling of Electrical Resistivity and Capillary Pressure Characteristics, Transport in Porous Media, vol. 41, pp. 263-286.
Marino, M. A., (1967), Hele-Shaw Model Study of the Growth and Decay of Groundwater Ridges, Journal of Geophyics Research, vol. 72, pp. 1195–1205.
Marios, A. I. and and Ioannis, C., (1991), Network Modeling of Pore Structure and Transport Properties of Porous Media, Chemical Engineering Science, vol. 48, pp. 951-972
Mathon, R. and Johnston, R.L., (1977), The Approximate Solution of Elliptic Boundary Value Problems by Fundamental Solutions. SIAM Journal on Numerical Analysis, vol. 14, pp. 638–650.
Mazaheri, A. R., Zerai, B., Ahmadi, G., Kadambi, J. R., Saylor, B. Z., Oliver, M., Bromhal, G. S. and Smith, D. H., (2005), Computer Simulation of Flow Through A Lattice Flow-Cell, Advances in Water Resources, vol. 28, pp. 1267-1279.
Mizamura, K. and Kaneda, T., (2010), Boundary Condition of Groundwater Flow through Sloping Seepage Face, Journal of Hydrological Engineering, vol. 15, pp. 718-724.
Mousavi, M. and Bryant, S., (2012), Connectivity of Pore Space as A Control on Two-Phase Flow Properties of Tight-Gas Sandstones, Transport in Porous Media, vol. 94, pp.537–554.
Munson, B. R., Young, D. F., Okiishi, T. H. and Huebsch, W. W., (2009), Fundamentals of Fluid Mechanics, 6th edition, John Wiley & Sons Inc.
Naji, A., Cheng, A. H. D. and Ouazar, D., (1999), BEM Solution of Stochastic Seawater Intrusion Problems, Engineering Analysis with Boundary Elements, vol. 23, pp. 529–537.
Nogues, J. P., Celia, M. A. and Peters, C. A., (2012), Pore Network Model Development to Study Dissolution and Precipitation of Carbonates, XIX International Conference on Water Resources CMWR, University of Illinois at Urbana-Champaign.
Nsir, K. and Schafer, G., (2010), A Pore-Throat Model Based on Grain-Size Distribution to Quantify Gravity-Dominated DNAPL Instabilities in A Water-Saturated Homogeneous Porous Medium, Comptes Rendus Geoscience,vol. 342, pp. 881-891.
Oren, P. E. and Bakke, S., (2002), Process Based Reconstruction of Sandstones and Prediction of Transport Properties, Transport in Porous Media, vol. 46, pp. 311–343.
Raoof, A. and Hassanizadeh, S. M., (2010), A New Method for Generating Pore-Network Models of Porous Media, Transport in Porous Media, vol. 81, pp. 391–407.
Reddy, J. N., (2006), An Introduction to Finite Element Method, 3rd edition, McGrawHill.
Spitz, K. and Moreno, J., (1996), A Practical Guide to Groundwater and Solute Transport Modeling, John Wiley and Sons Inc.
Steele, D. D. and Nieber, E. H., Network Modeling of Diffusion Coefficients for Porous Media. II. Simulations. Soil Science Society of American Journal, vol. 58, pp. 1346–1354.
Taigbenu, A. E., Liggett, J. A. and Cheng, A. H. D., (1984), Boundary Integral Solution to Seawater Intrusion into Coastal Aquifers, Water Resources Research, vol. 20, pp 1150–1158.
Thauvin, F. and Mohanty, K. K., (1998), Network Modeling of Non-Darcy Flow through Porous Media, Transport in Porous Media, vol. 31, pp. 19-37.
Todd, D. K., (1980), Grounwater Hydrology, 2nd edition, John Wiley and Sons Inc.
Tryggvason, G. and Aref, H., (1983), Numerical Experiments on Hele Shaw Flow With A Sharp Interface, Journal of Fluid Mechanics, vol. 136, pp. 1-30.
Vafai, K., (2005), Handbook of Porous Media, 2nd edition, Taylor and Francis Group.
Varin, R. D. and Fang. H. Y., (1967), Design and Construction of a Horizontal Viscous Flow Model, Ground Water, vol. 5, pages 35-41
Vedat B., (2006), Applied Flow and Solute Transport Modeling in Aquifers, CRC Taylor and Francis Group.
Xie, X., (2009), Nonexistence of Classical Steady Hele–Shaw Bubble, Nonlinear Analysis: Theory, Methods & Applications, vol. 70, pp. 1217-1238.
Yen, B. C. and Hsie, C. H., (1972), Viscous Flow Model for Groundwater Movement, Water Resouces Research, vol. 8, pp. 1299–1306.
YiLung, Y., TingChien, C. and YiMin, W., (2000), Hydraulic Conductivity Identification of Groundwater Sandbox Model, Bulletin of National Pingtung University of Science and Technology, vol. 9, pp. 133-142.
Zienkiewicz, O. C., Taylor, R. L. and Zhu, J. Z., (2005), The Finite Element Method: Its Basis and Fundamentals, 6th edition, Elsevier.