فهرست:
1 فصل اول مقدمه. 1
1.1 فراتفکیکپذیری به عنوان یک مسئله معکوس.... 7
1.2 فصل بندی پایان نامه. 10
2 فصل دوم مرور کارهای گذشته. 13
2.1 مدل سیستم عکسبرداری.. 14
2.2 فراتفکیک پذیری در حوزه فرکانس.... 16
2.3 روشهای حوزه فضایی.. 18
2.3.1 درونیابی- بازسازی: روشهای غیرتکراری.. 19
2.3.2 روش های آماری.. 21
2.3.2.1 حداکثر احتمال.. 23
2.3.2.2 حداکثر احتمال پسین... 25
2.3.2.3 بازنشانی- MAP توام. 27
2.3.3 رویکرد طرحریزی بر روی مجموعههای محدب.. 28
2.3.4 رویکرد ترکیبی ML-POCS. 30
3 فصل سوم ارتقاء وضوح تصاویر خاکستری.. 31
3.1 ترکیب تصاویر کم وضوح مبتنی بر تخمین- M... 32
3.1.1 چارچوب تخمین M... 32
3.1.2 ترکیب تصاویر مبتنی بر تخمین Half-Quadratic. 40
3.1.2.1 محاسبه پارامتر a مطابق با دقت هر فریم.. 42
3.1.3 تنظیم کنندهها 45
3.2 روش پیشنهادی جهت ارتقاء وضوح.. 49
3.3 آزمایشها 50
3.3.1 بررسی روشهای متفاوت بازسازی و تاثیر تنظیم کنندهها 51
3.3.2 ارزیابی عملکرد الگوریتم پیشنهادی در مقابل خطای ثبت... 52
3.3.3 ارزیابی استحکام روش پیشنهادی در مقابل پرتیها 54
3.3.4 پیادهسازی روش پیشنهادی روی تصاویر واقعی.. 55
4 فصل چهارم ارتقاء وضوح تصاویر رنگی.. 65
4.1 مروری بر مسائل فراتفکیکپذیری در تصاویر رنگی و موزائیک زدایی تصویر. 66
4.1.1 فراتفکیک پذیری در تصاویر رنگی.. 66
4.1.2 موزائیک زدایی تصویر. 67
4.1.3 ادغام فراتفکیکپذیری و موزائیک زدایی در یک فرآیند. 73
4.2 مدل ریاضی و حل مسئله. 75
4.2.1 مدل ریاضی سیستم عکسبرداری.. 75
4.3 روش پیشنهادی جهت موزائیک زدایی چند فریمی.. 78
4.3.1 جملهی وفاداری.. 80
4.3.2 جملهی جریمهی روشنایی.. 80
4.3.3 جملهی جریمهی رنگ... 81
4.3.4 جملهی جریمهی وابستگیهای رنگی.. 82
4.4 تابع هزینه کلی.. 83
4.5 آزمایشها 84
4.5.1 بررسی عملکرد الگوریتم پیشنهادی در برابر خطاهای ثبت... 86
4.5.2 بررسی عملکرد الگوریتم پیشنهادی در برابر پرتیها 87
5 فصل پنجم جمعبندی و نتیجهگیری.. 95
5.1 نتیجهگیری.. 96
5.2 پیشنهادهایی برای کارهای آتی.. 97
منابع و مراجع.. 101
پیوستها
منبع:
G. Hansda, “super-resolution with better edge enhancemen”, M.Sc thesis, The University of Texas, Texas, Nov. 2012.
S. Park, M. Park, and M. G. Kang, “Super-resolution image reconstruction, a technical overview,” IEEE Signal Process. Mag, Vol. 20, No. 3, pp. 21–36, 2003.
P. Milanfar, super-resolution imaging, 1rd Edition, CRC Press, New York, United States of America, 2011.
X. Gao, K.Zhang, D.Tao, and X.Li, “Image Super-Resolution With Sparse Neighbor Embedding,” IEEE Transactions on Image processing, Vol. 21, No. 7, 2012.
A. Maalouf, M. C. Larabi, “Colour image super-resolution using geometric grouplets”, IET Image Process, Vol. 6, Iss. 2, pp. 168 – 180, 2012.
X. Gao, K. Zhang, D. Tao, and X. Li, “Joint Learning for Single-Image Super-Resolution via a Coupled Constraint,” IEEE transactions on image processing, Vol. 21, No. 2, 2012.
W. T. Freeman, T. R. Jones, and E.C. Pasztor, “Example-based super-resolution,” IEEE Computer Graphics and Applications, 22(2):56-65, 2002.
T.-M. Chan and J. Zhang, “An improved super-resolution with manifold learning and histogram matching,” in Proc. IAPR Int. Conf. Bio-metrics, pp. 756–762, 2006
K. Zhang, X. Gao, X. Li, and D. Tao, “Partially supervised neighbor embedding for example-based image super-resolution,” IEEE J. Sel. Topics. Signal Process, Vol. 5, No. 2, pp. 230–239, 2011.
K. I. Kim and Y. Kwon, “Single-image super-resolution using sparse regression and natural image prior,” IEEE Trans. Pattern Anal. Mach. Intell, Vol. 32, No. 6, pp. 1127–1133, 2010.
S. Farsiu, A fast and robust framework for image fusion and enhancement. PhD thesis, University of California, Santa Cruz, Dec. 2005.
D. L. Donoho, “Compressed sensing,” IEEE Transactions on Information Theory, Vol. 52, No. 4, pp. 1289-1306, 2006.
F. Lin, C.B. Fookes, V. Chandran, and S. Sridharan, “Investigation into optical flow super-resolution for surveillance applications,” In The Australian Pattern Recognition Society Workshop on Digital Image Computing, 2005.
X. Jia, F. Li, and D. Fraser, “Universal HMT based super resolution for remote sensing images,” In IEEE International Conference on Image Processing, pp. 333-336, 2008.
J. A. Kennedy, O. Israel, A. Frenkel, R. Bar-Shalom, and A. Haim, “Super-resolution in PET imaging,” IEEE Transactions on Medical Imaging, Vol. 25, No. 2, pp137-147, 2006.
J. Maintz, and M. Viergever, “A survey of medical image registration, Medical Image Analysis,” Vol.2, No.1, pp.1-36, 1998
K. Malczewski, and R. Stasinski, “ Toeplitz-based iterative image fusion scheme for MRI,” In IEEE International Conference on Image Processing, pp. 341-344, 2008.
S. Peleg, and Y. Yeshurun, “Super-resolution in MRI: application to human white matter fiber tract visualization by diffusion tensor imaging,” Magazine Resonance in Medicine, Vol.45, No.1, pp. 29-35, 2001.
M. Elad and A. Feuer, “Restoration of single super-resolution image from several blurred, noisy and down-sampled measured images,” IEEE Trans. Image Processing, vol. 6, pp. 1646–1658, 1997.
G. Golub, and C. V. Loan, Matrix computations, 3rd Edition, The Johns Hopkins University Press, London, England, 1996.
M. A. Lukas, “Asymptotic optimality of generalized cross-validation for choosing the regularization parameter,” Numerical Mathematic, Vol. 66, No. 1, pp. 41–66, 1993.
N. Nguyen, P. Milanfar, and G. Golub, “Efficient generalized cross-validation with applications to parametric image restoration and resolution enhancement,” IEEE Trans. Image Processing, Vol. 10, pp. 1299–1308, 2001.
P. C. Hansen, and D. P. O’Leary, “The use of the L-curve in the regularization of ill-posed problems,” SIAM J. Sci. Computer., Vol. 14, pp. 1487–1503, Nov. 1993.
R. Y. Tsai, and T. S. Huang, “Multiple frame image restoration and registration,” In Advances in Computer Vision and Image Processing, Vol. 1, pp. 317–339, 1984.
S.C. Park, M. Park, and M. Kang, “Super-resolution image reconstruction: a technical overview,” IEEE Signal Processing Magazine, Vol. 20, No. 3, pp.21-36, 2003.
M. Elad S. Farsiu, D. Robinson and P. Milanfar, “Advances and challenges in super-resolution,” International Journal of Imaging Systems and Technology, Vol.14, No.2, pp. 47-57, 2004.
S. Borman, Topics in Multiframe Super-resolution Restoration. PhD thesis, University of Notre Dame, Notre Dame, IN, 2004.
S. P. Kim, N. K. Bose, and H. M. Valenzuela, “Recursive reconstruction of high resolution image from noisy under sampled multiframes,” IEEE Transactions on Acoustics, Speech and Signal Processing, Vol. 38, No.6, pp. 1013- 1027, 1990.
N. K. Bose, H. C. Kim, and H. M. Valenzuela. “Recursive implementation of total least squares algorithm for image reconstruction from noisy, undersampled multiframes,” In Proceedings of the IEEE Conference on Acoustics, Speech and Signal Processing, Vol. 5, pp. 269-272, 1993.
A. N. Tikhonov and V. A. Arsenin, Solution of ill-posed problems, Winston & Sons, Washington, 1997.
W. Su and S. P. Kim, “High-resolution restoration of dynamic image sequences,” International Journal of Imaging Systems and Technology, Vol. 5, No. 4, pp. 330-339, 1994.
B. C. Tom, A. K. Katsaggelos, and N. P. Galatsanos, “Reconstruction of a high resolution image from registration and restoration of low resolution images,” In Proceedings of IEEE International Conference on Image Processing, pp. 553-557, 1994
S. Baker and T. Kanade, “Limits on super-resolution and how to break them,” IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 24, No.9, pp. 1167-1183, 2002.
S. Borman and R. Stevenson, “Super-resolution from image sequences - A review,” In Proceedings of the 1998 Midwest Symposium on Circuits and Systems, pp. 374-378, 1998.
R. R. Schultz and R. L. Stevenson, “A Bayesian approach to image expansion for improved definition,” IEEE Transactions on Image Processing, Vol. 3, No. 3, pp. 233-242, 1994.
R. R. Schultz and R. L. Stevenson, “Extraction of high-resolution frames from video sequences,” IEEE Transactions on Image Processing, Vol. 5, No. 6, pp. 996-1011, 1996.
R. C. Hardie, K. J. Barnard, and E. E. Armstrong, “Join MAP registration and high resolution image estimation using a sequence of undersampled images,” IEEE Transactions on Image Processing, Vol. 6, No. 12, pp. 1621-1633, 1997.
H. Stark and P. Oskoui, “High-resolution image recovery from image-plane arrays, using convex projections,” Journal of Optical Society of America A, Vol. 6, No. 11, pp. 1715-1726, 1989.
M. Elad and Y. Hel-Or, “A fast super-resolution reconstruction algorithm for pure translational motion and common space invariant blur,” IEEE Transactions on Image Processing, Vol. 10, No. 8, pp. 1187-1193, 2001.
S. Farsiu, D. Robinson, M. Elad, and P. Milanfar, “Fast and robust multi-frame super-resolution,” IEEE Transaction on Image Processing, Vol. 13, No. 10, pp. 1327-1344, 2004.
M. Protter and M. Elad, “Super resolution with probabilistic motion estimation,” IEEE Transactions on Image Processing, Vol. 18, No. 8, pp. 1899-1904, 2009.
D. Keren, S. Peleg, and R. Brada, “Image sequence enhancement using subpixel displacements,” In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 742-746, 1988.
H. Ur and D. Gross. Improved resolution from subpixel shifted pictures. CVGIP: Graphical Models and Image Processing, Vol. 54, No. 2, pp. 181-186, 1992.
J. Chung, E. Haber, and J. Nagy, “Numerical methods for coupled super-resolution” Inverse Problems, Vol. 22, No. 4, pp. 1261-1272, 2006.
A. Papulis, “Generalized sampling expansion,” IEEE Transactions on Circuits and Systems, Vol. 24, No. 11, pp. 652-654, 1977.
N. Nguyen and P. Milanfar, “An efficient wavelet-based algorithm for image super-resolution,” In Proceedings of International Conference on Image Processing, Vol. 2, pp. 351-354, 2000
M. S. Alam, J. G. Bognar, R. C. Hardie, and B. J. Yasuda, “Infrared image registration and high-resolution reconstruction using multiple translationally shifted aliased video frames,” IEEE Transactions on Instrumentation and Measurement, Vol. 49, No. 5, pp. 915-923, 2000.
B. Setiyono, M. Hariadi, and M. H. Purnomo, “Survey of super-resolution using phased based image matching,” Journal of Theoretical and Applied Information Technology, Vol. 43 No.2, pp. 245-253, 2012.
S. Lerttrattanapanich and N. K. Bost, “High resolution image formation from low resolution frames using delaunay triangulation,” IEEE Trans-action on Image Processing, Vol. 11, No. 12, pp. 1427-1441, 2002.
T. Q. Pham, L. J. Vliet, and K. Schutte, “Robust fusion of irregularly sampled data using adaptive normalized convolution,” EURASIP Journal on Applied Signal Processing, 2006.
H. Knutsson, C.-F. Westin, “Normalized and differential convolution,” In Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 515-523, 1993.
H. Takeda, S. Farsiu, and P. Milanfar, “Kernel regression for image processing and reconstruction,” IEEE Transactions on Image Processing, Vol. 16, No. 2, pp. 349-366, 2007.
M. C. Chiang and T. E. Boulte, “Efficient super-resolution via image warping,” Image and Vision Computing, Vol. 18, No. 10, pp. 761-771, 2000.
D. M. Young. Iterative solution of large linear systems. New York: Academic, 1971.
M. Irani and S. Peleg, “Super resolution from image sequences” In Proceedings of 10th International Conference on Pattern Recognition, Vol. 2, pp. 115-120, 1990.
M. Irani and S. Peleg, “Improving resolution by image registration,” CVGIP: Graphical Models and Imaging Processing, Vol. 53, No. 3, pp. 231-239, 1991.
M. Irani and S. Peleg, “Motion analysis for image enhancement: resolution, occlusion and transparency,” Journal of Visual Communications and Image Representation, Vol. 4, No. 4, pp. 324-335, 1993.
D. Capel. Image Mosaicing and Super-resolution. Springer, 2004.
P. J. Huber, “Robust Statistics,” Wiley Series in Probability and Statistics, John Wiley & Sons, New York, NY, USA, 2003.
F. R. Hampel, E. M. Ronchetti, P. J. Rousseeuw, and W. A. Stahel, “Robust Statistics: The Approach Based on Influence Functions,” Wiley Series in Probability and Statistics, John Wiley & Sons, New York, NY, USA, 2005.
R. A. Maronna, D. R. Martin, and V. J. Yohai, “Robust Statistics: Theory and Methods,” Wiley Series in Probability and Statistics, John Wiley & Sons, New York, NY, USA, 2006.
N. Sebe and M. S. Lew, “Robust Computer Vision: Theory and Applications,” Springer, Berlin, Germany, 2003
M. J. Black and P. Anandan, “The robust estimation of multiple motions: parametric and piecewise-smooth flow fields,” Computer Vision and Image Understanding, Vol. 63, No.1, pp. 75–104, 1996.
T. Rabie, “Robust estimation approach for blind denoising,” IEEE Transactions on Image Processing, Vol. 14, No. 11, pp. 1755–1765, 2005.
M. J. Black, G. Sapiro, D. H. Marimont, and D. Heeger, “Robust anisotropic diffusion,” IEEE Transactions on Image Processing, Vol. 7, No. 3, pp. 421–432, 1998.
P. Meer, D. Mintz, A. Rosenfeld, and D. Y. Kim, “Robust regression methods for computer vision: a review,” International Journal of Computer Vision, Vol. 6, No. 1, pp. 59–70, 1991.
T.Q. Pham, L.J. van Vliet, K. Schutte, “Robust super-resolution by minimizing a Gaussian-weighted l2 error norm,” J. Phys.: Conf. Ser. 124 (2008) 012037.
N.A. EI-Yamany, P.E. Papamichalis, “An adaptive M-estimation framework for robust image superresolution without regularization,” SPIE Proc. SPIE-IS&T Electron. Image68221D, pp. 112, 2008.
N.A. EI-Yamany, P.E. Papamichalis, “Robust color image superresolution: an adaptive M-estimation framework,” EURASIP J. Image Video Process. Article ID 763254, 2008.
V. Patanavijit, S. Jitapunkul, “A robust iterative multiframe super-resolution reconstruction using a Huber Bayesian approach with Huber–Tikhonov regularization,” International Symposium on Intelligent Signal Processing and Communications, Yonago, Japan, 2006.
N. A. El-Yamany, P. E. Papamichalis, and W. R. Schucany, “A robust image superresolution scheme based on redescending M-estimators and information-theoretic divergence,” in Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP ’07) , Vol. 1, pp. 741–744, Honolulu, Hawaii, USA, 2007
http://users.soe.ucsc.edu/~milanfar/software/sr-datasets.html
V. Patanavijit and S. Jitapunkul, “A Lorentzian stochastic estimation for a robust iterative multiframe super-resolution reconstruction with Lorentzian-Tikhonov regularization,” EURASIP Journal on Advances in Signal Processing, vol. 2007, Article ID 34821, 21 pages, 2007.
V. Patanavijit, S. Tae-O-Sot, and S. Jitapunkul, “A robust iterative super-resolution reconstruction of image sequences using a Lorentzian Bayesian approach with fast affine block-based registration,” in Proceedings of IEEE International Conference on Image Processing (ICIP ’07) , Vol. 5, pp. 393–396, San Antonio, Tex, USA, Sep-Oct 2007.
V. Patanavijit, “A robust iterative multiframe SRR based on Hampel stochastic estimation with Hampel–Tikhonov regularization,” Proceedings of IEEE 19th International Conference on Pattern Recognition (ICPR 2008), Florida, USA.
V. Patanavijit, “A Leclerc Bayesian approach for video reconstruction based on a robust iterative SRR and a general observation model",” Proceedings of International Symposium on Communications and Information Technologies (ISCIT 2010), pp. 856–861, Tokyo, Japan
V. Patanavijit, “A robust iterative multiframe SRR based on Andrew’s Sine stochastic estimation with Andrew’s Sine–Tikhonov regularization,” Proceedings of IEEE International Symposium on Intelligent Signal Processing and Communication Systems (ISPACS 2008), Bangkok, Thailand.
V. Patanavijit, S. Jitapunkul, “A robust iterative multiframe super-resolution reconstruction using a Bayesian approach with Tukey’s biweight,” in: Proceedings of IEEE 8th International Conference on Signal Processing (ICSP 2006), Beijing, China.
M. Vrigkas, C. Nikou, and L. P. Kondi, “A fully robust framework for MAP image super-resolution” Image Processing, (ICIP2012), 19th IEEE International Conference on , pp. 2225 – 2228, 2012
X. Zeng, and L. Yang, “A robust multiframe super resolution algorithm based on half-quadratic estimation with modified BTV regularization.” Digital Signal Processing 23, pp. 98-109, 2013.
P.J. Huber, Robust Statistics, Wiley, 1981.
E. Kaltenbacher, R. C. Hardie, “High-resolution infrared image reconstruction using multiple low resolution aliased frames,” In Proceedings of the IEEE National Aerospace Electronics Conference, vol. 2, pp. 702-709, 1996.
D. Capel and A. Zisserman, “Computer vision applied to super-resolution,” IEEE Signal Processing Magazine, Vol. 20, No. 3, pp. 75-86, 2003.
K. M. Hanson and G. W. Wecksung. Bayesian approach to limited-angle reconstruction in computed tomography. Journal of Optical Society of America, Vol. 73, No. 11, pp. 1501-1509, 1983.
G. T. Herman, H. Hurwitz, “A. Lent, and H-P. Lung. On the Bayesian approach to image reconstruction,” Information and Control, Vol. 42, No. 1, pp. 60-71, 1979.
N. Nguyen, P. Milanfar, and G. H. Golub, “A computationally efficient image super-resolution algorithm,” IEEE Transactions on Image Processing, Vol. 10, No. 5, pp. 573-583, 2001.
E. Lee, M. Kang, “Regularized adaptive high-resolution image reconstruction considering inaccurate subpixel registration," IEEE Trans. Image Process. 12, pp. 806–813, 2003.
http://en.wikipedia.org/wiki/Color_filter_array
M. E. Tipping, C. M. Bishop, “Bayesian image super-resolution.” In Proceedings of Advances in Neural Information Proceeding Systems, pp. 1279-1286, 2003.
D. Capel, A. Zisserman, “Automated mosaicing with super-resolution zoom,” In Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 885-891, 1998.
D. Capel, A. Zisserman, “Super-resolution enhancement of text image sequences,” In Proceedings of the International Conference on Pattern Recognition, vol. 1, pp. 1600-1605, 2000.
D. Capel , A. Zisserman, “Computer vision applied to super-resolution,” IEEE Signal Processing Magazine, Vol. 20, No. 3, pp. 75-86, 2003.
L. C. Pickup, D. P. Capel, S. J. Roberts, and A. Zisserman, “Bayesian image super-resolution, continued,” In Proceedings of Advances in Neural Information and Proceedings Systems, pp. 1089-1096, 2006.
L. C. Pickup, D. P. Capel, S. J. Roberts, and A. Zisserman, “Bayesian methods for image super-resolution,” The Computer Journal, Vol. 52, No. 1, pp. 101- 113, 2009.
Y. Li, F. Santosa, “A computational algorithm for minimizing total variation in image restoration,” IEEE Transactions on Image Processing, Vol. 5, No. 6, pp. 987-995, 1996.
T. F. Chan, S. Osher, and J. Shen, “The digital TV filter and nonlinear denosing,” IEEE Transaction on Image Processing, Vol. 10, No. 2, pp. 231-241, 2001.
L. Rudin, S. Osher, and E. Fatemi, “Nonlinaer total variation based noise removal algorithms” Physica D: Nonlinear Phenomena, Vol. 60, No. 4, pp. 259-268, 1992.
B. C. Tom, A. K. Katsaggelos, “Reconstruction of a high-resolution image by simultaneous registration, restoration and interpolation of low-resolution images,” In Proceedings of the IEEE International Conference on Image Processing, vol. 2, pp. 2539, 1995.
C. A. Segall, A. K. Katsaggelos, R. Molina, and J. Mateos, “Bayesian resolution enhancement of compressed video,” IEEE Transactions on Image Processing, Vol. 13, No. 7, pp. 898-910, 2004.
C. A. Segall, R. Molina, and A. K. Katsaggelos, “High resolution images from low-resolution compressed video,” IEEE Signal Processing Magazine, Vol. 20, No. 3, pp. 37-38, 2003.
N. A. Woods, N. P. Galatsanos, and A. K. Katsaggelos, “Stochastic methods for joint registration, restoration and interpolation of multiple undersampled images,” IEEE Transactions on Image Processing, Vol. 15, No. 1, pp. 210-213, 2006.
D. C. Youla, H. Webb, “Image registration by the method of convex projections: Part 1-thoery,” IEEE Transactions on Medical Imaging, Vol. 1, No. 2, pp. 81-94, 1982.
A. J. Patti, M. Sezan, and A. M. Tekalp, “Robust methods for high quality stills from interlaced video in the presence of dominant motion,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 7, No. 2, pp. 328- 342, 1997.
A. J. Patti, M. I. Sezan, and A. M. Tekalp, “High-resolution image reconstruction from a low-resolution image sequence in the presence of time-varying motion blur,” In Proceedings of the IEEE International Conference on Image Processing, vol.1, pp. 343-347, 1994.
A. J. Patti, M. I. Sezan, and A. M. Tekalp, “Super resolution video reconstruction with arbitrary sampling lattices and nonzero aperture time,” IEEE Transactions on Image Processing, Vol. 6, No. 8, pp. 1064-1076, 1997.
D.-S. Huang, K. Li, and G.W, “POCS Super-Resolution Sequence Image Reconstruction Based on Image Registration Excluded Aliased Frequency Domain” ICIC 2006, pp. 1240–1245, Berlin. Heidelberg.
S. M. Kay, “Fundamentals of statistical signal processing: estimation theory," vol. I. Prentice-Hall, 1993.
S. Najafi, Single and Multi-view Video Super-resolution. PhD thesis, Mcmaster University, Hamilton, Ontario, Canada, Oct. 2012.
A. Panagiotopoulou, V. Anastassopoulos, “Regularized super-resolution image reconstruction employing robust error norms,” Optical Engineering 4811, 117004 November 2009
T. Rabie, “Robust estimation approach for blind denoising,” IEEE Trans. Image Process. Vol. 14, pp. 1755–1765, 2005.
P. Charbonnier, L. Feraud, G. Aubert, and M. Borlaud, “Deterministic edge-preserving regularized in computed imaging,” IEEE Trans. Image Process. Vol. 6, pp. 298–311, 1997.
X. Y. Zeng, L.Y. Yang, “Mixed impulse and Gaussian noise removal using detail-preserving regularization,” Opt. Eng. Vol. 49, 2010.
D. P. Bertsekas, Nonlinear Programming, Athena Scientific, 1999.
J. Nocedal, S.J. Wright, Numerical Optimization, Springer-Verlag, 2006
S. Farsiu, M. Elad, and P. Milanfar, “Multiframe Demosaicing and Super-Resolution of Color Images,” IEEE Transactions on Image Processing, VOL. 15, NO. 1, 2006.
N. R. Shah, A. Zakhor, “Resolution enhancement of color video se-quences,”IEEE Trans. Image Process., vol. 8, no. 6, pp. 879–885, 1999.
B. C. Tom and A. Katsaggelos, “Resolution enhancement of mono-chrome and color video using motion compensation,” IEEE Trans. Image Process., vol. 10, no. 2, pp. 278–287, 2001.
M. Irani and S. Peleg, “Improving resolution by image registration,” CVGIP: Graph. Models Image Process., vol. 53, pp. 231–239, 1991
Ni, K.S., Nguyem, T.Q. “Color image super resolution based on a stochastic combinational classification-regression algorithm,” IEEE Int. Conf. on Image Processing, pp. 89–92, 2007.
X. Li, B. Zhang, “Image Demosaicing: A Systematic Survey” In Proc. SPIE, vol. 6822, 68221J, 2008.
K. Hirakawa, T. W. Parks, “Adaptive Homogeneity-Directed Demosaicing Algorithm,” IEEE Transactions on Image Processing, Vol. 14, No. 3, 2005
D. R. Cok, “Signal processing method and apparatus for sampled image signals.” United States Patent 4,630,307, 1987.
C. Laroche, M. Prescott, “Apparatus and Method for Adaptive for Adaptively Interpolating a Full Color Image Utilizing Chrominance Gradients,” U.S. Patent 5 373 322, 1994.
J. Hamilton and J. Adams, “Adaptive Color Plan Interpolation in Single Sensor Color Electronic Camera,” U.S. Patent 5 629 734, 1997.
R. Kimmel, “Demosaicing: image reconstruction from color CCD samples,” IEEE Trans. Image Process., Vol. 8, No. 9, pp. 1221–1228, 1999.
L. Chang and Y.-P. Tan, “Color filter array demosaicking: new method and performance measures,” IEEE Trans. Image Process., Vol. 12, No. 10, pp. 1194–1210, 2002.
D. Keren, M. Osadchy,“Restoring subsampled color images,”Mach. Vis. Appl., Vol. 11, No. 4, pp. 197–202, 1999.
S. C. Pei and I. K. Tam, “Effective color interpolation in CCD color filter arrays using signal correlation,” IEEE Trans. Image Process., Vol. 13, No. 6, pp. 503–513, 2003
T. Gotoh and M. Okutomi, “Direct super-resolution and registration using raw CFA images,” in Proc. of the Int. Conf. on Computer Vision and Pattern Recognition (CVPR), vol. 2, pp. 600–607, 2004.
A L. Philip, Single-Sensor Imaging: Methods and Applications for Digital Cameras, 1rd Edition, Taylor & Francis Inc, Bosa Roca, United States, 2008.
O. Bowen and C. S. Bouganis, “Real-time image super resolution using an FPGA,” In International Conference on Field Programmable Logic and Applications, pp. 89-94, 2008.
J. Yang, J. Wright, T. Huang, and Y. Ma, “Image super-resolution as sparse representation of raw image patches,” In Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 1-8, 2008.