فهرست:
چکیده………………………………………………………………………………………………1
فصل اول          2
1-1      مقدمه                                                                                                                                                                                                                                                                    2
1-2      آمارپسماند. 3
1-3      روشهای حذف پسماند. 3
1-3-1       روش دفن زباله. 3
1-3-2       روش سوزاندن پسماند. 4
1-3-3       تبدیل پسماند به کمپوست.. 4
1-3-4       بازیافت   4
1-3-5       پیرولیز. 5
فصل دوم :مروری بر مطالعات انجام شده. 6
2-1      طبقه بندی پلیمرها 6
2-1-1       الاستومرها 6
2-1-2       پلاستیکها 10
2-1-3       شکست پلی اتیلن. 13
2-2      انواع تخریب   13
2-3      پیرولیز پلاستیکها و رابرها 14
2-4      محصولات حاصل از پیرولیز پلی بوتادین رابر و استایرن بوتادین رابر. 15
یک
2-4-1    محصولات جانبی پیرولیز. 15
2-5      آزمونهای مورد استفاده در پیرولیز. 16
2-5-1       گرماوزن سنجی حاصل از پیرولیز تایرهای ضایعاتی با سرعت حرارت دهی بالا. 16
2-5-1       بررسی نمودارهای گرما وزن سنجی.. 17
2-6      کاتالیستهای مورد استفاده در پیرولیز. 21
2-6-1       کاتالیست غربال مولکولی.. 21
2-6-2       مقدار کاتالیست.. 23
2-7      سرعت همزن. 27
2-8      پارامترهای فرآیندی مؤثر بر پدیده پیرولیز پلی الفین ها 28
2-8-1       تأثیر دما برروی فرآیند پیرولیز. 28
2-8-2       تأثیر کاتالیست برروی فرآیند پیرولیز. 32
2-8-3       تأثیر گازهای حامل بر فرآیند پیرولیز. 36
2-8-4       تأثیر سرعت همزن بر روی فرآیند پیرولیز. 38
2-9      چند مثال مختلف از پیرولیز. 40
فصل سوم: مواد و روشها 42
3-1      روشهای آزمون. 42
3-1-1       روش انجام آزمون پیرولیز. 42
3-1-2       روش انجام آزمون با استفاده از دستگاه گرماوزن سنجی 43
3-1-3       دستگاه کروماتوگرافی گازی. 44
3-2      مواد آزمون. 44
3-2-1       استایرن بوتادین رابر. 44
3-2-2       پلی بوتادین رابر. 45
3-2-3       پلی پروپیلن. 46
دو
3-2-4       کاتالیست  FCC.. 46
 
3-2-5       کاتالیست H-Mordenite. 47
3-2-6       کاتالیست  HZSM-5. 47
3-2-7       پلی اتیلن سنگین. 48
فصل چهارم: تحلیل نتایج و بحث ……….. 49
4-1      مقدمه                                                                                                                                                                                                                                                                    49
4-2      پیرولیز پلی اتیلن سنگین. 49
4-2-1       پیرولیز حرارتی  پلی اتیلن سنگین. 50
4-2-2       پیرولیز کاتالیستی پلی اتیلن سنگین. 50
4-3      پیرولیز پلی پروپیلن. 55
4-3-1       پیرولیز حرارتی پلی پروپیلن. 55
4-3-2       پیرولیز کاتالیستی پلی پروپیلن. 56
4-4      پیرولیز پلی بوتادین رابر. 60
4-4-1       پیرولیز حرارتی پلی بوتادین رابر. 60
4-4-2       پیرولیز کاتالیستی پلی بوتادین رابر. 60
4-4-3       تأثیر درصدکاتالیست FCC بر پیرولیز پلی بوتادین رابر. 66
4-4-4       بررسی روند تغییرات دما طی فرآیند پیرولیز پلی بوتادین رابر. 69
4-5      پیرولیز استایرن بوتادین رابر. 71
4-5-1       پیرولیز حرارتی استایرن بوتادین رابر. 71
4-5-2       پیرولیز کاتالیستی استایرن بوتادین رابر. 72
4-5-3       بررسی تأثیر درصد کاتالیست FCC بر پیرولیز استایرن بوتادین رابر. 76
4-5-4       بررسی روند تغییرات دما طی فرآیند پیرولیز استایرن بوتادین رابر. 77
سه
4-6      بررسی تأثیر کاتالیستهای FCC ، HZSM-5 و H-Mordeniteبر روی پیرولیز لاستیکها و پلاستیکها          ............................... 79
 
4-7    نتایج آزمون گرما وزن سنجی.. 84
4-7-1       بررسی تخریب پلی بوتادین رابر با استفاده از گرما وزن سنجی.. 84
4-7-2       بررسی تخریب استایرن بوتادین رابر با استفاده از گرما وزن سنجی.. 90
فصل 5 : نتیجه گیری و پیشنهادات........................................................................................................................................ ...................................................................................................... 93
5-1      نتایج      93
5-2      پیشنهادات.. 96
ضمائم      97
مراجع    121
منبع:
[1]     Buekens A, Introduction to Feedstock Recycling of Plastics. In Feedstock Recycling and Pyrolysis of Waste Plastics, John Wiley & Sons, Ltd: 2006.
[2]     Parfitt D J Analysis for 'Waste not, Want not'.
[3]     Seifali M. Consideration of Molecular Weight Distribution and  Process Parameters on the Pyrolysis and Thermal Degradation of Polyolefins Iran polymer & petrochemil institute. 1391.
[4]     http://polypedia.ir.
[5]     Anderson D A., Freeman E S, "The kinetics of the thermal degradation of polystyrene and polyethylene", Journal of Polymer Science, 54, (159), 253-260,1961.
[6]     Bockhorn H., Hornung A., Hornung U., Schawaller D, "Kinetic study on the thermal degradation of polypropylene and polyethylene", Journal of Analytical and Applied Pyrolysis, 48, (2), 93-109,1999.
[7]     Conesa J A., Font R., Marcilla A., Garcia A N, "Pyrolysis of Polyethylene in a Fluidized Bed Reactor", Energy & Fuels, 8, (6), 1238-1246,1994.
[8]     Ishihara Y., Nanbu H., Ikemura T., Takesue T, "Catalytic decomposition of polyethylene using a tubular flow reactor system", Fuel, 69, (8), 978-984,1990.
[9]     Ishihara Y., Nanbu H., Saido K., Ikemura T., Takesue T, "Mechanism for gas formation in polyethylene catalytic decomposition", Polymer, 33, (16), 3482-3486,1992.
[10]   Kaminsky W., Menzel J., Sinn H, "Recycling of plastics", Conservation & Recycling, 1, (1), 91-110,1976.
[11]   Kodera Y., Ishihara Y., Kuroki T, "Novel Process for Recycling Waste Plastics To Fuel Gas Using a Moving-Bed Reactor", Energy & Fuels, 20, (1), 155-158,2005.
[12]   Scott D S., Czernik S R., Piskorz J., Radlein D S A G, "Fast pyrolysis of plastic wastes", Energy & Fuels, 4, (4), 407-411,1990.
[13]   Kumar S., Singh R K, "Optimization of process parameters by response surface methodology (RSM) for catalytic pyrolysis of waste high-density polyethylene to liquid fuel", Journal of Environmental Chemical Engineering, 2, (1), 115-122,2014.
[14]   Zadgaonkar A, Process and Equipment for Conversions of Waste Plastics into Fuels. In Feedstock Recycling and Pyrolysis of Waste Plastics, John Wiley & Sons, Ltd: 2006.
[15]   Blazsó M, "Recent trends in analytical and applied pyrolysis of polymers", Journal of Analytical and Applied Pyrolysis, 39, (1), 1-25,1997.
[16]   Dickens B, "Thermal degradation study of isotactic polypropylene using factor-jump thermogravimetry", Journal of Polymer Science: Polymer Chemistry Edition, 20, (5), 1169-1183,1982.
[17]   Kiang J K Y., Uden P C., Chien J C W, "Polymer reactions—Part VII: Thermal pyrolysis of polypropylene", Polymer Degradation and Stability, 2, (2), 113-127,1980.
[18]   Lattimer R P, "Direct analysis of polypropylene compounds by thermal desorption and pyrolysis—mass spectrometry", Journal of Analytical and Applied Pyrolysis, 26, (2), 65-92,1993.
[19]   Tsuchiya Y., Sumi K, "Thermal decomposition products of polypropylene", Journal of Polymer Science Part A-1: Polymer Chemistry, 7, (7), 1599-1607,1969.
[20]   Garforth A A., Lin Y H., Sharratt P N., Dwyer J, "Production of hydrocarbons by catalytic degradation of high density polyethylene in a laboratory fluidised-bed reactor", Applied Catalysis A: General, 169, (2), 331-342,1998.
[21]   Manos G., Garforth A., Dwyer J, "Catalytic Degradation of High-Density Polyethylene over Different Zeolitic Structures", Industrial & Engineering Chemistry Research, 39, (5), 1198-1202,2000.
[22]   Manos G., Garforth A., Dwyer J, "Catalytic Degradation of High-Density Polyethylene on an Ultrastable-Y Zeolite. Nature of Initial Polymer Reactions, Pattern of Formation of Gas and Liquid Products, and Temperature Effects", Industrial & Engineering Chemistry Research, 39, (5), 1203-1208,2000.
[23]   Mordi R C., Fields R., Dwyer J, "Thermolysis of low density polyethylene catalysed by zeolites", Journal of Analytical and Applied Pyrolysis, 29, (1), 45-55,1994.
[24]   Negelein D L., Bonnet E., White R L, "Effluent Monitoring by Repetitive Injection Gas Chromatography—Mass Spectrometry", Journal of Chromatographic Science, 37, (7), 263-269,1999.
[25]   Senneca O., Salatino P., Chirone R, "A fast heating-rate thermogravimetric study of the pyrolysis of scrap tyres", Fuel, 78, (13), 1575-1581,1999.
[26]   González J F., Encinar J M., Canito J L., Rodrı́guez J J, "Pyrolysis of automobile tyre waste. Influence of operating variables and kinetics study", Journal of Analytical and Applied Pyrolysis, 58–59, (0), 667-683,2001.
[27]   Cunliffe A M., Williams P T, "Composition of oils derived from the batch pyrolysis of tyres", Journal of Analytical and Applied Pyrolysis, 44, (2), 131-152,1998.
[28]   Blazsó M, Composition of Liquid Fuels Derived from the Pyrolysis of Plastics. In Feedstock Recycling and Pyrolysis of Waste Plastics, John Wiley & Sons, Ltd: 2006.
[29]   Lin Y H., Yang M H, "Chemical catalysed recycling of polypropylene over a spent FCC catalyst and various commercial cracking catalysts using TGA", Thermochimica Acta, 470, (1–2), 52-59,2008.
[30]   Fernández-Berridi M J., González N., Mugica A., Bernicot C, "Pyrolysis-FTIR and TGA techniques as tools in the characterization of blends of natural rubber and SBR", Thermochimica Acta, 444, (1), 65-70,2006.
[31]   Uemichi Y., Hattori M., Itoh T., Nakamura J., Sugioka M, "Deactivation Behaviors of Zeolite and Silica−Alumina Catalysts in the Degradation of Polyethylene", Industrial & Engineering Chemistry Research, 37, (3), 867-872,1998.
[32]   Aguado J., Serrano D P., Escola J M., Garagorri E, "Catalytic conversion of low-density polyethylene using a continuous screw kiln reactor", Catalysis Today, 75, (1–4), 257-262,2002.
[33]   Aguado J., Sotelo J L., Serrano D P., Calles J A., Escola J M, "Catalytic Conversion of Polyolefins into Liquid Fuels over MCM-41:  Comparison with ZSM-5 and Amorphous SiO2−Al2O3", Energy & Fuels, 11, (6), 1225-1231,1997.
[34]   Audisio G., Silvani A., Beltrame P L., Carniti P, "Catalytic thermal degradation of polymers: Degradation of polypropylene", Journal of Analytical and Applied Pyrolysis, 7, (1–2), 83-90,1984.
[35]   de la Puente G., Klocker C., Sedran U, "Conversion of waste plastics into fuels: Recycling polyethylene in FCC", Applied Catalysis B: Environmental, 36, (4), 279-285,2002.
[36]   De Stefanis A., Perez G., Lilla E., Ursini O., Tomlinson A A G, "Conversions of resins and asphaltenes in porous catalysts", Journal of Analytical and Applied Pyrolysis, 57, (1), 37-44,2001.
[37]   Lee K-H., Jeon S-G., Kim K-H., Noh N-S., Shin D-H., Park J., Seo Y., Yee J-J., Kim G-T, "Thermal and catalytic degradation of waste high-density polyethylene (HDPE) using spent FCC catalyst", Korean J Chem Eng, 20, (4), 693-697,2003.
[38]   Marcilla A., Beltran M., Conesa J A, "Catalyst addition in polyethylene pyrolysis: Thermogravimetric study", Journal of Analytical and Applied Pyrolysis, 58–59, (0), 117-126,2001.
[39]   Marcilla A., Gómez A., Reyes-Labarta J A., Giner A., Hernández F, "Kinetic study of polypropylene pyrolysis using ZSM-5 and an equilibrium fluid catalytic cracking catalyst", Journal of Analytical and Applied Pyrolysis, 68–69, (0), 467-480,2003.
[40]   Ono Y, "A survey of the mechanism in catalytic isomerization of alkanes", Catalysis Today, 81, (1), 3-16,2003.
[41]   Park J W., Kim J-H., Seo G, "The effect of pore shape on the catalytic performance of zeolites in the liquid-phase degradation of HDPE", Polymer Degradation and Stability, 76, (3), 495-501,2002.
[42]   Sakata Y., Uddin M A., Muto A, "Degradation of polyethylene and polypropylene into fuel oil by using solid acid and non-acid catalysts", Journal of Analytical and Applied Pyrolysis, 51, (1–2), 135-155,1999.
[43]   Seo Y-H., Lee K-H., Shin D-H, "Investigation of catalytic degradation of high-density polyethylene by hydrocarbon group type analysis", Journal of Analytical and Applied Pyrolysis, 70, (2), 383-398,2003.
[44]   Serrano D P., Aguado J., Escola J M, "Catalytic conversion of polystyrene over HMCM-41, HZSM-5 and amorphous SiO2–Al2O3: comparison with thermal cracking", Applied Catalysis B: Environmental, 25, (2–3), 181-189,2000.
[45]   Walendziewski J, "Engine fuel derived from waste plastics by thermal treatment", Fuel, 81, (4), 473-481,2002.
[46]   Walendziewski J, Thermal and Catalytic Conversion of Polyolefins. In Feedstock Recycling and Pyrolysis of Waste Plastics, John Wiley & Sons, Ltd: 2006.
[47]   Zhou Z., Zhang Y., Tierney J W., Wender I, "Hybrid zirconia catalysts for conversion of Fischer–Tropsch waxy products to transportation fuels", Fuel Processing Technology, 83, (1–3), 67-80,2003.
[48]   Sharratt P N., Lin Y H., Garforth A A., Dwyer J, "Investigation of the Catalytic Pyrolysis of High-Density Polyethylene over a HZSM-5 Catalyst in a Laboratory Fluidized-Bed Reactor", Industrial & Engineering Chemistry Research, 36, (12), 5118-5124,1997.
[49]   Aguado J., Serrano D P., Sotelo J L., Van Grieken R., Escola J M, "Influence of the Operating Variables on the Catalytic Conversion of a Polyolefin Mixture over HMCM-41 and Nanosized HZSM-5", Industrial & Engineering Chemistry Research, 40, (24), 5696-5704,2001.
[50]   Aguado J., Serrano D P., Escola J M, Catalytic Upgrading of Plastic Wastes. In Feedstock Recycling and Pyrolysis of Waste Plastics, John Wiley & Sons, Ltd: 2006.
[51]   Scheirs J, Overview of Commercial Pyrolysis Processes for Waste Plastics. In Feedstock Recycling and Pyrolysis of Waste Plastics, John Wiley & Sons, Ltd: 2006.
[52]   seifali m. Consideration of Molecular Weight Distribution and  Process Parameters on the Pyrolysis and Thermal Degradation of Polyolefins Iran polymer & petrochemil institute, 1391.
[53]   Karaduman A., Şimşek E H., Çiçek B., Bilgesü A Y, "Flash pyrolysis of polystyrene wastes in a free-fall reactor under vacuum", Journal of Analytical and Applied Pyrolysis, 60, (2), 179-186,2001.
[54]   Ramdoss P K., Tarrer A R, "High-temperature liquefaction of waste plastics", Fuel, 77, (4), 293-299,1998.
[55]   Xingzhong Y, Converting Waste Plastics into Liquid Fuel by Pyrolysis: Developments in China. In Feedstock Recycling and Pyrolysis of Waste Plastics, John Wiley & Sons, Ltd: 2006.
[56]   プラスチック化学リサイクル研究会, Proceedings of the 2nd International Symposium on Feedstock Recycling of Plastics & Other Innovative Plastics Recycling Techniques: ISFR 2002 : Ostend, Belgium, September 8-September 11, 2002. Research Association for Feedstock Recycling of Plastics: 2002.
[57]   Scheirs J, "Overview of commercial pyrolysis processes for waste plastics", Feedstock recycling and pyrolysis of waste plastics: converting waste plastics into diesel and other fuels, 381-433,2006.
[58]   Uemichi Y., Takuma K., Ayame A, "Chemical recycling of poly(ethylene) by catalytic degradation into aromatic hydrocarbons using H-Ga-silicate", Chemical Communications,  (18), 1975-1976,1998.
[59]   Coelho A., Costa L., Marques M M., Fonseca I M., Lemos M A N D A., Lemos F, "The effect of ZSM-5 zeolite acidity on the catalytic degradation of high-density polyethylene using simultaneous DSC/TG analysis", Applied Catalysis A: General, 413–414, (0), 183-191,2012.
[60]   Agullo J., Kumar N., Berenguer D., Kubicka D., Marcilla A., Gómez A., Salmi T., Murzin D Y, "Catalytic pyrolysis of low density polyethylene over H-β, H-Y, H-Mordenite, and H-Ferrierite zeolite catalysts: Influence of acidity and structures", Kinet Catal, 48, (4), 535-540,2007.
[61]   Angyal A., Miskolczi N., Bartha L., Valkai I, "Catalytic cracking of polyethylene waste in horizontal tube reactor", Polymer Degradation and Stability, 94, (10), 1678-1683,2009.
[62]   Coelho A., Fonseca I M., Matos I., Marques M M., Botelho do Rego A M., Lemos M A N D A., Lemos F, "Catalytic degradation of low and high density polyethylenes using ethylene polymerization catalysts: Kinetic studies using simultaneous TG/DSC analysis", Applied Catalysis A: General, 374, (1–2), 170-179,2010.
[63]   Elordi G., Olazar M., Lopez G., Amutio M., Artetxe M., Aguado R., Bilbao J, "Catalytic pyrolysis of HDPE in continuous mode over zeolite catalysts in a conical spouted bed reactor", Journal of Analytical and Applied Pyrolysis, 85, (1–2), 345-351,2009.
[64]   Jeon J-K., Park Y-K, "Pyrolysis of an LDPE-LLDPE-EVA copolymer mixture over various mesoporous catalysts", Korean J Chem Eng, 29, (2), 196-200,2012.
[65]   Neves I C., Botelho G., Machado A V., Rebelo P, "Catalytic degradation of polyethylene: An evaluation of the effect of dealuminated Y zeolites using thermal analysis", Materials Chemistry and Physics, 104, (1), 5-9,2007.
[66]   Xie C., Liu F., Yu S., Xie F., Li L., Zhang S., Yang J, "Catalytic cracking of polypropylene into liquid hydrocarbons over Zr and Mo modified MCM-41 mesoporous molecular sieve", Catalysis Communications, 10, (1), 79-82,2008